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ABSTRACT 

The propose of this note is to establish a bound on the number of edges on 
a face of an arrangement of curves in the plane, and to correct thereby an 
error in an earlier formulation by Griinbaum. 

DEFINITION. Let an be a family of simple closed curves in the plane with the 

property that each pair of them intersects exactly twice. Then a n is called an 

arrangement of curves. By a face of an arrangement we mean the closure of a 

component of the complement of the curves of the arrangement. 

Arrangements of curves generalize arrangements of lines in which each pair of 

lines intersects exactly once. For a survey of results on arrangements of curves 

and arrangements of lines, including for example, Sylvester's problem and its 

relatives, see [2]. In an arrangment of n lines, the largest number of edges on any 

face is clearly n (for other results on face sizes in arrangements of lines, see [1]). 

The corresponding result for arrangements of curves is less immediate. Let P(F) 

denote the number of edges on F, a face in an arrangement of n curves (n > 1). 

We shall show: 

THEOREM. 

1. P(F) < 2 n - 2 .  

2. I f  the arrangement is digon-free and if n > 4, then P(F) < 2n - 4 .  

S,appa~e Cj i~ a curve touching F in edges el and e'~ (and possibly other edges) 

and C2 is another curve touching F in e 2 and e 2 '  (and possibly other edges). 
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The pairs el ,  and e l ' ,  e2, e2', may not separate one another around the boundary 

of F for if they did, C1 and C2 would intersect at least 4 times, contrary to the 

nature of an arrangement. Thus the pattern of edges and their associated curves 

encountered around the boundary of F is a special case of the following concept 

of a properly partitioned polygon. 

DEFINITION. Let Q be a planar (non-intersecting) polygon whose edges are 

partitioned into m equivalent classes, m > 2, such that: 

1. If  e l ,  e t '  are in one equivalence class and e2, e2' are in another, then the 

pairs e~, e~' and e2, e2' do not separate one another around the boundary of Q. 

2. Adjacent edges around the boundary of Q are in different equivalence classes. 

Then Q is called a properly partitioned polygon. 

LEMMA 1. If  Q is a properly partitioned polygon with m equivalence classes, 
m => 2, then P(Q)=<2m-2. 

PROOF. The proof is by induction on m. If  m = 2, it is easy to see that Q must 

be a digon, whence P(Q)= m = 2 and the inequality holds. More generally, if 

each equivalence class has but a single member (the class or its member will then 

be called a singleton) P(Q) = m < 2m - 2 since m > 2. Thus we may assume 

there is a class C with two (or more) members el and e2. Then if we remove el and 

e2 from the boundary of Q, we are left with a disjoint pair of arcs A' and A".  We 

define new properly partitioned polygons Q' and Q" as follows (see Fig. 1): Q' is 

derived from Q by contracting A"  to a point and amalgamating el and e2 into 

one edge; Q" is derived from Q by contracting A' to a point amalgamating e 1 and 

e2 into one edge. Let m' and m "  denote the number of equivalence classes in Q' and 

Q" respectively. Each of A' and A"  contains the whole equivalence class of any 

e 1 

e 2 

Fig. 1. 

A' 
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edge it contains. Thus m' + m"  = m + 1. Since A' and A "  each contain edges, 

m' and m "  > 2 whence m' and m "  < m. Thus we may apply the inductive hypo- 

thesis giving: 

P(Q') < 2 m ' -  2 and 

P(Q")  < 2m"  - 2. 

But P(Q) = P(Q') + P(Q") and so P(Q) < 2(m'  + m")  - 4 = 2m - 2. 

COROLLARY 1. I f  F is a face of an arrangement of n curves, then P(F)< 2n - 2. 

COROLLARY 2. Let Q be a properly partitioned polygon with s singletons and 

let C 1 , ' " ,  C~ be the non-singleton classes (i f  there are any). Then 

s >__ Ic, I - 2k + 2. 

PROOF. By the Lemma l,  2 m - 2 > P ( Q ) = s +  ] ~ ] C , [  so 2 ( s + k ) - 2  
_>-s+ ]~] lC, [  a n d s >  Z k l c , [ - 2 k + 2 .  

LnMMA 2. Let F be a face of a digon-free arrangement of n curves. Then if 

n > 4, we have P(F) < 2n - 4. 

PROOV. We will consider maximal runs of consecutive singletons around F. 

In the event that a single run contains all the edges of F, P(F) < n < 2 n -  4 

since n > 4. Thus we can assume there are at least two maximal runs. If  we 

replace each maximal run of consecutive singletons by a single singleton edge 

(i.e., amalgamate all the edges in the run into one edge), we will have a new 

properly partitioned polygon F '  with s' singletons. Now we claim s > 2s' where 

s is the number of singletons in F. This follows if we can show that each maximal 

run of singletons around F contains at least two edges. Actually, we show that if 

this is not the case, then P(F) < 2n - 6. For  suppose we have a consecutive triple 

of edges e, ea, e' where e, e' lie on a curve C. The region formed by C and e, which 

does not contain F must be intersected by at least two curves Ca and C2 or else 

this region would be, or contain, a digon. By the Jordan curve theorem, neither 

Ca nor C2 touches F. Thus we may delete Ca and Ca from the arrangement and 

have a new arrangement with n - 2  curves but still containing F as a face. By 

Corollary 1, P ( F ) < 2 ( n - 2 ) - 2  = 2 n -  6. Thus we may assume s > 2s ' ,  

whence, by Corollary 2: 

s >__ 2 z Ic, I -  4k + 4  
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= 2 ~,~IC, j - 4 ( n - s ) + 4  

so 4 n > 2  X k l c  ' 1 + 3 s + 4  

= 2(x lc, I + 4  

whence 2n - 4 > x k  I C, I + s + (s/2 - 2) 

= P(F)  + (s/2 - 2). 

Now since F has at least two maximal runs, in each of which there are at least 

two singletons, therefore s/2 > 2 and the desired inequality has been obtained. 

Both assertions of the Theorem have now been proved. Figures 2 and 3 show 

that the two assertions of the Theorem are the best possible. Figure 4 shows 

that the hypothesis n > 4 in Statement 2 is necessary. 

Fig. 2 Fig. 3 Fig. 4 

Finally, we note that the result holds also for weak arrangements which are 

families of curves in which the elements of each pair either cross twice, or are 

tangent once, or are disjoint. 
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